Publications

Showing 1 to 2 of 2 results

Propulsion Electrification
Analysis of Long-term Indicators in the British Balancing Market

IEEE Transactions on Power Systems

Student(s):  Dr Isaac Flower

Cohort:  Cohort 2

Date:  July 26, 2023

Link:  View publication


Proactive participation of uncertain renewable generation in the day-ahead (DA) wholesale market effectively reduces the system marginal price and carbon emissions, whilst significantly increasing the volumes of real-time balancing mechanism prices to ensure system security and stability. To solve the conflicting interests over the two timescales, this paper: 1) proposes a novel hierarchical optimization model to align with the actual operation paradigms of the hierarchical market, whereby the capacity allocation matrix is adopted to coordinate the DA and balancing markets; 2) mathematically formulates and quantitatively analyses the long-term driving factors of balancing actions, enabling system operators (SOs) to design efficient and well-functioning market structures to meet economic and environmental targets; 3) empowers renewable generating units and flexible loads to participate in the balancing market (BM) as ‘active’ actors and enforces the non-discriminatory provision of balancing services. The performance of the proposed model is validated on a modified IEEE 39-bus power system and a reduced GB network. Results reveal that with effective resource allocation in different timescales of the hierarchical market, the drop speed of balancing costs soars while the intermittent generation climbs. The proposed methodology enables SOs to make the most of all resources available in the market and balance the system flexibly and economically. It thus safeguards the climate mitigation pathways against the risks of substantially higher balancing costs.

Propulsion Electrification
Open data for modelling the impacts of electric vehicles on UK distribution networks: Opportunities for a digital spine

IET Smart Grid

Student(s):  Dr Isaac Flower

Cohort:  Cohort 2

Date:  November 29, 2024

Link:  View publication


This paper provides a detailed overview of the current snapshot of available open data for modelling the impacts of electric vehicles (EVs) on the UK distribution network, highlighting opportunities for a digital spine. We are the first to review open data available for UK distribution networks, focusing on spatial data. We also explore data for census small geographies, vehicle ownership, EV charger locations and data on their usage. Several issues are identified, including inconsistencies in dataset availability, file naming conventions, feature definitions and geographic discrepancies. We specifically analyse EV charger connection data for secondary distribution substations from two UK Distribution Network Operators (DNOs). The validity of the data is assessed by comparing it to known public charger locations from OpenChargeMap. While one DNO provides data coverage for >95% of its substations, it is valid for only 24.1% of substations with at least one public charger. Conversely, the other DNO provides data coverage for 1% of its substations due to privacy-related obfuscation, with data valid for 98.3% of substations with at least one public charger. Addressing these challenges through standardised data-sharing practices and implementing a digital spine could enhance the accuracy and reliability of EV-grid integration models. These improvements are essential for facilitating the seamless integration of EVs into the grid and supporting the transition to a sustainable energy system.